Pular para o conteĆŗdo principal

šŸ“š Bibliography

The page contains an organized list of all papers used by this course. The papers are organized by topic.

To cite this course, use the provided citation in the Github repository.

šŸ”µ = Paper directly cited in this course. Other papers have informed my understanding of the topic.

Note: since neither the GPT-3 nor the GPT-3 Instruct paper correspond to davinci models, I attempt not to cite them as such.

Prompt Engineering Strategies​

Chain of Thought1 šŸ”µā€‹

Zero Shot Chain of Thought2 šŸ”µā€‹

Self Consistency3 šŸ”µā€‹

What Makes Good In-Context Examples for GPT-3?4 šŸ”µā€‹

Ask-Me-Anything Prompting5 šŸ”µā€‹

Generated Knowledge6 šŸ”µā€‹

Recitation-Augmented Language Models7 šŸ”µā€‹

Rethinking the role of demonstrations8 šŸ”µā€‹

Scratchpads9​

Maieutic Prompting10​

STaR11​

Least to Most12 šŸ”µā€‹

Reframing Instructional Prompts to GPTk’s Language13 šŸ”µā€‹

The Turking Test: Can Language Models Understand Instructions?14 šŸ”µā€‹

Reliability​

MathPrompter15 šŸ”µā€‹

The Unreliability of Explanations in Few-shot Prompting for Textual Reasoning16 šŸ”µā€‹

Prompting GPT-3 to be reliable17​

Diverse Prompts18 šŸ”µā€‹

Calibrate Before Use: Improving Few-Shot Performance of Language Models19 šŸ”µā€‹

Enhanced Self Consistency20​

Bias and Toxicity in Zero-Shot CoT21 šŸ”µā€‹

Constitutional AI: Harmlessness from AI Feedback22 šŸ”µā€‹

Compositional Generalization - SCAN23​

Automated Prompt Engineering​

AutoPrompt24 šŸ”µā€‹

Automatic Prompt Engineer25​

Models​

Language Models​

GPT-326 šŸ”µā€‹

GPT-3 Instruct27 šŸ”µā€‹

PaLM28 šŸ”µā€‹

BLOOM29 šŸ”µā€‹

BLOOM+1 (more languages/ 0 shot improvements)30​

Jurassic 131 šŸ”µā€‹

GPT-J-6B32​

Roberta33​

Image Models​

Stable Diffusion34 šŸ”µā€‹

DALLE35 šŸ”µā€‹

Soft Prompting​

Soft Prompting36 šŸ”µā€‹

Interpretable Discretized Soft Prompts37 šŸ”µā€‹

Datasets​

MultiArith38 šŸ”µā€‹

GSM8K39 šŸ”µā€‹

HotPotQA40 šŸ”µā€‹

Fever41 šŸ”µā€‹

BBQ: A Hand-Built Bias Benchmark for Question Answering42 šŸ”µā€‹

Image Prompt Engineering​

Taxonomy of prompt modifiers43​

DiffusionDB44​

The DALLE 2 Prompt Book45 šŸ”µā€‹

Prompt Engineering for Text-Based Generative Art46 šŸ”µā€‹

With the right prompt, Stable Diffusion 2.0 can do hands.47 šŸ”µā€‹

Optimizing Prompts for Text-to-Image Generation48​

Prompt Engineering IDEs​

Prompt IDE49 šŸ”µā€‹

Prompt Source50 šŸ”µā€‹

PromptChainer51 šŸ”µā€‹

PromptMaker52 šŸ”µā€‹

Tooling​

LangChain53 šŸ”µā€‹

TextBox 2.0: A Text Generation Library with Pre-trained Language Models54 šŸ”µā€‹

OpenPrompt: An Open-source Framework for Prompt-learning55 šŸ”µā€‹

GPT Index56 šŸ”µā€‹

Applied Prompt Engineering​

Language Model Cascades57​

MRKL58 šŸ”µā€‹

ReAct59 šŸ”µā€‹

PAL: Program-aided Language Models60 šŸ”µā€‹

User Interface Design​

Design Guidelines for Prompt Engineering Text-to-Image Generative Models61​

Prompt Injection​

Machine Generated Text: A Comprehensive Survey of Threat Models and Detection Methods62 šŸ”µā€‹

Evaluating the Susceptibility of Pre-Trained Language Models via Handcrafted Adversarial Examples63 šŸ”µā€‹

Prompt injection attacks against GPT-364 šŸ”µā€‹

Exploiting GPT-3 prompts with malicious inputs that order the model to ignore its previous directions65 šŸ”µā€‹

adversarial-prompts66 šŸ”µā€‹

GPT-3 Prompt Injection Defenses67 šŸ”µā€‹

Talking to machines: prompt engineering & injection68​

Exploring Prompt Injection Attacks69 šŸ”µā€‹

Using GPT-Eliezer against ChatGPT Jailbreaking70 šŸ”µā€‹

Microsoft Bing Chat Prompt71​

Jailbreaking​

Ignore Previous Prompt: Attack Techniques For Language Models72​

Lessons learned on Language Model Safety and misuse73​

Toxicity Detection with Generative Prompt-based Inference74​

New and improved content moderation tooling75​

OpenAI API76 šŸ”µā€‹

OpenAI ChatGPT77 šŸ”µā€‹

ChatGPT 4 Tweet78 šŸ”µā€‹

Acting Tweet79 šŸ”µā€‹

Research Tweet80 šŸ”µā€‹

Pretend Ability Tweet81 šŸ”µā€‹

Responsibility Tweet82 šŸ”µā€‹

Lynx Mode Tweet83 šŸ”µā€‹

Sudo Mode Tweet84 šŸ”µā€‹

Ignore Previous Prompt85 šŸ”µā€‹

Updated Jailbreaking Prompts86 šŸ”µā€‹

Surveys​

Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing87​

PromptPapers88​

Dataset Generation​

Discovering Language Model Behaviors with Model-Written Evaluations89​

Selective Annotation Makes Language Models Better Few-Shot Learners90​

Applications​

Atlas: Few-shot Learning with Retrieval Augmented Language Models91​

STRUDEL: Structured Dialogue Summarization for Dialogue Comprehension92​

Miscl​

Prompting Is Programming: A Query Language For Large Language Models93​

Parallel Context Windows Improve In-Context Learning of Large Language Models94​

A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT95 šŸ”µā€‹

Learning to Perform Complex Tasks through Compositional Fine-Tuning of Language Models96​

Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks97​

Making Pre-trained Language Models Better Few-shot Learners98​

Grounding with search results99​

How to Prompt? Opportunities and Challenges of Zero- and Few-Shot Learning for Human-AI Interaction in Creative Applications of Generative Models100​

On Measuring Social Biases in Prompt-Based Multi-Task Learning101​

Plot Writing From Pre-Trained Language Models102 šŸ”µā€‹

StereoSet: Measuring stereotypical bias in pretrained language models103​

Survey of Hallucination in Natural Language Generation104​

Examples105​

Wordcraft106​

PainPoints107​

Self-Instruct: Aligning Language Model with Self Generated Instructions108​

From Images to Textual Prompts: Zero-shot VQA with Frozen Large Language Models109​

Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference110​

Ask-Me-Anything Prompting5​

A Watermark for Large Language Models111​


  1. Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E., Le, Q., & Zhou, D. (2022). Chain of Thought Prompting Elicits Reasoning in Large Language Models. ↩
  2. Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., & Iwasawa, Y. (2022). Large Language Models are Zero-Shot Reasoners. ↩
  3. Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S., Chowdhery, A., & Zhou, D. (2022). Self-Consistency Improves Chain of Thought Reasoning in Language Models. ↩
  4. Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., & Chen, W. (2021). What Makes Good In-Context Examples for GPT-3? ↩
  5. Arora, S., Narayan, A., Chen, M. F., Orr, L., Guha, N., Bhatia, K., Chami, I., Sala, F., & RĆ©, C. (2022). Ask Me Anything: A simple strategy for prompting language models. ↩
  6. Liu, J., Liu, A., Lu, X., Welleck, S., West, P., Bras, R. L., Choi, Y., & Hajishirzi, H. (2021). Generated Knowledge Prompting for Commonsense Reasoning. ↩
  7. Sun, Z., Wang, X., Tay, Y., Yang, Y., & Zhou, D. (2022). Recitation-Augmented Language Models. ↩
  8. Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M., Hajishirzi, H., & Zettlemoyer, L. (2022). Rethinking the Role of Demonstrations: What Makes In-Context Learning Work? ↩
  9. Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H., Austin, J., Bieber, D., Dohan, D., Lewkowycz, A., Bosma, M., Luan, D., Sutton, C., & Odena, A. (2021). Show Your Work: Scratchpads for Intermediate Computation with Language Models. ↩
  10. Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Bras, R. L., & Choi, Y. (2022). Maieutic Prompting: Logically Consistent Reasoning with Recursive Explanations. ↩
  11. Zelikman, E., Wu, Y., Mu, J., & Goodman, N. D. (2022). STaR: Bootstrapping Reasoning With Reasoning. ↩
  12. Zhou, D., SchƤrli, N., Hou, L., Wei, J., Scales, N., Wang, X., Schuurmans, D., Cui, C., Bousquet, O., Le, Q., & Chi, E. (2022). Least-to-Most Prompting Enables Complex Reasoning in Large Language Models. ↩
  13. Mishra, S., Khashabi, D., Baral, C., Choi, Y., & Hajishirzi, H. (2022). Reframing Instructional Prompts to GPTk’s Language. Findings of the Association for Computational Linguistics: ACL 2022. https://doi.org/10.18653/v1/2022.findings-acl.50 ↩
  14. Efrat, A., & Levy, O. (2020). The Turking Test: Can Language Models Understand Instructions? ↩
  15. Imani, S., Du, L., & Shrivastava, H. (2023). MathPrompter: Mathematical Reasoning using Large Language Models. ↩
  16. Ye, X., & Durrett, G. (2022). The Unreliability of Explanations in Few-shot Prompting for Textual Reasoning. ↩
  17. Si, C., Gan, Z., Yang, Z., Wang, S., Wang, J., Boyd-Graber, J., & Wang, L. (2022). Prompting GPT-3 To Be Reliable. ↩
  18. Li, Y., Lin, Z., Zhang, S., Fu, Q., Chen, B., Lou, J.-G., & Chen, W. (2022). On the Advance of Making Language Models Better Reasoners. ↩
  19. Zhao, T. Z., Wallace, E., Feng, S., Klein, D., & Singh, S. (2021). Calibrate Before Use: Improving Few-Shot Performance of Language Models. ↩
  20. Mitchell, E., Noh, J. J., Li, S., Armstrong, W. S., Agarwal, A., Liu, P., Finn, C., & Manning, C. D. (2022). Enhancing Self-Consistency and Performance of Pre-Trained Language Models through Natural Language Inference. ↩
  21. Shaikh, O., Zhang, H., Held, W., Bernstein, M., & Yang, D. (2022). On Second Thought, Let’s Not Think Step by Step! Bias and Toxicity in Zero-Shot Reasoning. ↩
  22. Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J., Jones, A., Chen, A., Goldie, A., Mirhoseini, A., McKinnon, C., Chen, C., Olsson, C., Olah, C., Hernandez, D., Drain, D., Ganguli, D., Li, D., Tran-Johnson, E., Perez, E., … Kaplan, J. (2022). Constitutional AI: Harmlessness from AI Feedback. ↩
  23. Lake, B. M., & Baroni, M. (2018). Generalization without Systematicity: On the Compositional Skills of Sequence-to-Sequence Recurrent Networks. https://doi.org/10.48550/arXiv.1711.00350 ↩
  24. Shin, T., Razeghi, Y., Logan IV, R. L., Wallace, E., & Singh, S. (2020). AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). https://doi.org/10.18653/v1/2020.emnlp-main.346 ↩
  25. Zhou, Y., Muresanu, A. I., Han, Z., Paster, K., Pitis, S., Chan, H., & Ba, J. (2022). Large Language Models Are Human-Level Prompt Engineers. ↩
  26. Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., … Amodei, D. (2020). Language Models are Few-Shot Learners. ↩
  27. Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J., & Lowe, R. (2022). Training language models to follow instructions with human feedback. ↩
  28. Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung, H. W., Sutton, C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko, S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer, N., Prabhakaran, V., … Fiedel, N. (2022). PaLM: Scaling Language Modeling with Pathways. ↩
  29. Scao, T. L., Fan, A., Akiki, C., Pavlick, E., Ilić, S., Hesslow, D., CastagnĆ©, R., Luccioni, A. S., Yvon, F., GallĆ©, M., Tow, J., Rush, A. M., Biderman, S., Webson, A., Ammanamanchi, P. S., Wang, T., Sagot, B., Muennighoff, N., del Moral, A. V., … Wolf, T. (2022). BLOOM: A 176B-Parameter Open-Access Multilingual Language Model. ↩
  30. Yong, Z.-X., Schoelkopf, H., Muennighoff, N., Aji, A. F., Adelani, D. I., Almubarak, K., Bari, M. S., Sutawika, L., Kasai, J., Baruwa, A., Winata, G. I., Biderman, S., Radev, D., & Nikoulina, V. (2022). BLOOM+1: Adding Language Support to BLOOM for Zero-Shot Prompting. ↩
  31. Lieber, O., Sharir, O., Lentz, B., & Shoham, Y. (2021). Jurassic-1: Technical Details and Evaluation, White paper, AI21 Labs, 2021. URL: Https://Uploads-Ssl. Webflow. Com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_ Tech_paper. Pdf. ↩
  32. Wang, B., & Komatsuzaki, A. (2021). GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model. https://github.com/kingoflolz/mesh-transformer-jax. https://github.com/kingoflolz/mesh-transformer-jax ↩
  33. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv Preprint arXiv:1907.11692. ↩
  34. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2021). High-Resolution Image Synthesis with Latent Diffusion Models. ↩
  35. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., & Chen, M. (2022). Hierarchical Text-Conditional Image Generation with CLIP Latents. ↩
  36. Lester, B., Al-Rfou, R., & Constant, N. (2021). The Power of Scale for Parameter-Efficient Prompt Tuning. ↩
  37. Khashabi, D., Lyu, S., Min, S., Qin, L., Richardson, K., Welleck, S., Hajishirzi, H., Khot, T., Sabharwal, A., Singh, S., & Choi, Y. (2021). Prompt Waywardness: The Curious Case of Discretized Interpretation of Continuous Prompts. ↩
  38. Roy, S., & Roth, D. (2015). Solving General Arithmetic Word Problems. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 1743–1752. https://doi.org/10.18653/v1/D15-1202 ↩
  39. Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano, R., Hesse, C., & Schulman, J. (2021). Training Verifiers to Solve Math Word Problems. ↩
  40. Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W. W., Salakhutdinov, R., & Manning, C. D. (2018). HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question Answering. ↩
  41. Thorne, J., Vlachos, A., Christodoulopoulos, C., & Mittal, A. (2018). FEVER: a large-scale dataset for Fact Extraction and VERification. ↩
  42. Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P. M., & Bowman, S. R. (2021). BBQ: A Hand-Built Bias Benchmark for Question Answering. ↩
  43. Oppenlaender, J. (2022). A Taxonomy of Prompt Modifiers for Text-To-Image Generation. ↩
  44. Wang, Z. J., Montoya, E., Munechika, D., Yang, H., Hoover, B., & Chau, D. H. (2022). DiffusionDB: A Large-scale Prompt Gallery Dataset for Text-to-Image Generative Models. ↩
  45. Parsons, G. (2022). The DALLE 2 Prompt Book. https://dallery.gallery/the-dalle-2-prompt-book/ ↩
  46. Oppenlaender, J. (2022). Prompt Engineering for Text-Based Generative Art. ↩
  47. Blake. (2022). With the right prompt, Stable Diffusion 2.0 can do hands. https://www.reddit.com/r/StableDiffusion/comments/z7salo/with_the_right_prompt_stable_diffusion_20_can_do/ ↩
  48. Hao, Y., Chi, Z., Dong, L., & Wei, F. (2022). Optimizing Prompts for Text-to-Image Generation. ↩
  49. Strobelt, H., Webson, A., Sanh, V., Hoover, B., Beyer, J., Pfister, H., & Rush, A. M. (2022). Interactive and Visual Prompt Engineering for Ad-hoc Task Adaptation with Large Language Models. arXiv. https://doi.org/10.48550/ARXIV.2208.07852 ↩
  50. Bach, S. H., Sanh, V., Yong, Z.-X., Webson, A., Raffel, C., Nayak, N. V., Sharma, A., Kim, T., Bari, M. S., Fevry, T., Alyafeai, Z., Dey, M., Santilli, A., Sun, Z., Ben-David, S., Xu, C., Chhablani, G., Wang, H., Fries, J. A., … Rush, A. M. (2022). PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts. ↩
  51. Wu, T., Jiang, E., Donsbach, A., Gray, J., Molina, A., Terry, M., & Cai, C. J. (2022). PromptChainer: Chaining Large Language Model Prompts through Visual Programming. ↩
  52. Jiang, E., Olson, K., Toh, E., Molina, A., Donsbach, A., Terry, M., & Cai, C. J. (2022). PromptMaker: Prompt-Based Prototyping with Large Language Models. Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3491101.3503564 ↩
  53. Chase, H. (2022). LangChain (0.0.66) [Computer software]. https://github.com/hwchase17/langchain ↩
  54. Tang, T., Junyi, L., Chen, Z., Hu, Y., Yu, Z., Dai, W., Dong, Z., Cheng, X., Wang, Y., Zhao, W., Nie, J., & Wen, J.-R. (2022). TextBox 2.0: A Text Generation Library with Pre-trained Language Models. ↩
  55. Ding, N., Hu, S., Zhao, W., Chen, Y., Liu, Z., Zheng, H.-T., & Sun, M. (2021). OpenPrompt: An Open-source Framework for Prompt-learning. arXiv Preprint arXiv:2111.01998. ↩
  56. Liu, J. (2022). GPT Index. https://doi.org/10.5281/zenodo.1234 ↩
  57. Dohan, D., Xu, W., Lewkowycz, A., Austin, J., Bieber, D., Lopes, R. G., Wu, Y., Michalewski, H., Saurous, R. A., Sohl-dickstein, J., Murphy, K., & Sutton, C. (2022). Language Model Cascades. ↩
  58. Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., & Tenenholtz, M. (2022). MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning. ↩
  59. Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., & Cao, Y. (2022). ReAct: Synergizing Reasoning and Acting in Language Models. ↩
  60. Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang, Y., Callan, J., & Neubig, G. (2022). PAL: Program-aided Language Models. ↩
  61. Liu, V., & Chilton, L. B. (2022). Design Guidelines for Prompt Engineering Text-to-Image Generative Models. Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3491102.3501825 ↩
  62. Crothers, E., Japkowicz, N., & Viktor, H. (2022). Machine Generated Text: A Comprehensive Survey of Threat Models and Detection Methods. ↩
  63. Branch, H. J., Cefalu, J. R., McHugh, J., Hujer, L., Bahl, A., del Castillo Iglesias, D., Heichman, R., & Darwishi, R. (2022). Evaluating the Susceptibility of Pre-Trained Language Models via Handcrafted Adversarial Examples. ↩
  64. Willison, S. (2022). Prompt injection attacks against GPT-3. https://simonwillison.net/2022/Sep/12/prompt-injection/ ↩
  65. Goodside, R. (2022). Exploiting GPT-3 prompts with malicious inputs that order the model to ignore its previous directions. https://twitter.com/goodside/status/1569128808308957185 ↩
  66. Chase, H. (2022). adversarial-prompts. https://github.com/hwchase17/adversarial-prompts ↩
  67. Goodside, R. (2022). GPT-3 Prompt Injection Defenses. https://twitter.com/goodside/status/1578278974526222336?s=20&t=3UMZB7ntYhwAk3QLpKMAbw ↩
  68. Mark, C. (2022). Talking to machines: prompt engineering & injection. https://artifact-research.com/artificial-intelligence/talking-to-machines-prompt-engineering-injection/ ↩
  69. Selvi, J. (2022). Exploring Prompt Injection Attacks. https://research.nccgroup.com/2022/12/05/exploring-prompt-injection-attacks/ ↩
  70. Stuart Armstrong, R. G. (2022). Using GPT-Eliezer against ChatGPT Jailbreaking. https://www.alignmentforum.org/posts/pNcFYZnPdXyL2RfgA/using-gpt-eliezer-against-chatgpt-jailbreaking ↩
  71. The entire prompt of Microsoft Bing Chat?! (Hi, Sydney.). (2023). https://twitter.com/kliu128/status/1623472922374574080 ↩
  72. Perez, F., & Ribeiro, I. (2022). Ignore Previous Prompt: Attack Techniques For Language Models. arXiv. https://doi.org/10.48550/ARXIV.2211.09527 ↩
  73. Brundage, M. (2022). Lessons learned on Language Model Safety and misuse. In OpenAI. OpenAI. https://openai.com/blog/language-model-safety-and-misuse/ ↩
  74. Wang, Y.-S., & Chang, Y. (2022). Toxicity Detection with Generative Prompt-based Inference. arXiv. https://doi.org/10.48550/ARXIV.2205.12390 ↩
  75. Markov, T. (2022). New and improved content moderation tooling. In OpenAI. OpenAI. https://openai.com/blog/new-and-improved-content-moderation-tooling/ ↩
  76. (2022). https://beta.openai.com/docs/guides/moderation ↩
  77. (2022). https://openai.com/blog/chatgpt/ ↩
  78. ok I saw a few people jailbreaking safeguards openai put on chatgpt so I had to give it a shot myself. (2022). https://twitter.com/alicemazzy/status/1598288519301976064 ↩
  79. Bypass @OpenAI’s ChatGPT alignment efforts with this one weird trick. (2022). https://twitter.com/m1guelpf/status/1598203861294252033 ↩
  80. ChatGPT jailbreaking itself. (2022). https://twitter.com/haus_cole/status/1598541468058390534 ↩
  81. Using ā€œpretendā€ on #ChatGPT can do some wild stuff. You can kind of get some insight on the future, alternative universe. (2022). https://twitter.com/NeroSoares/status/1608527467265904643 ↩
  82. I kinda like this one even more! (2022). https://twitter.com/NickEMoran/status/1598101579626057728 ↩
  83. Degrave, J. (2022). Building A Virtual Machine inside ChatGPT. Engraved. https://www.engraved.blog/building-a-virtual-machine-inside/ ↩
  84. (2022). https://www.sudo.ws/ ↩
  85. Perez, F., & Ribeiro, I. (2022). Ignore Previous Prompt: Attack Techniques For Language Models. arXiv. https://doi.org/10.48550/ARXIV.2211.09527 ↩
  86. AIWithVibes. (2023). 7 ChatGPT JailBreaks and Content Filters Bypass that work. https://chatgpt-jailbreak.super.site/ ↩
  87. Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., & Neubig, G. (2022). Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. ACM Computing Surveys. https://doi.org/10.1145/3560815 ↩
  88. PromptPapers. (2022). https://github.com/thunlp/PromptPapers ↩
  89. Perez, E., Ringer, S., LukoÅ”iÅ«tė, K., Nguyen, K., Chen, E., Heiner, S., Pettit, C., Olsson, C., Kundu, S., Kadavath, S., Jones, A., Chen, A., Mann, B., Israel, B., Seethor, B., McKinnon, C., Olah, C., Yan, D., Amodei, D., … Kaplan, J. (2022). Discovering Language Model Behaviors with Model-Written Evaluations. ↩
  90. Su, H., Kasai, J., Wu, C. H., Shi, W., Wang, T., Xin, J., Zhang, R., Ostendorf, M., Zettlemoyer, L., Smith, N. A., & Yu, T. (2022). Selective Annotation Makes Language Models Better Few-Shot Learners. ↩
  91. Izacard, G., Lewis, P., Lomeli, M., Hosseini, L., Petroni, F., Schick, T., Dwivedi-Yu, J., Joulin, A., Riedel, S., & Grave, E. (2022). Atlas: Few-shot Learning with Retrieval Augmented Language Models. ↩
  92. Wang, B., Feng, C., Nair, A., Mao, M., Desai, J., Celikyilmaz, A., Li, H., Mehdad, Y., & Radev, D. (2022). STRUDEL: Structured Dialogue Summarization for Dialogue Comprehension. ↩
  93. Beurer-Kellner, L., Fischer, M., & Vechev, M. (2022). Prompting Is Programming: A Query Language For Large Language Models. ↩
  94. Ratner, N., Levine, Y., Belinkov, Y., Ram, O., Abend, O., Karpas, E., Shashua, A., Leyton-Brown, K., & Shoham, Y. (2022). Parallel Context Windows Improve In-Context Learning of Large Language Models. ↩
  95. White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A., Spencer-Smith, J., & Schmidt, D. C. (2023). A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT. ↩
  96. Bursztyn, V. S., Demeter, D., Downey, D., & Birnbaum, L. (2022). Learning to Perform Complex Tasks through Compositional Fine-Tuning of Language Models. ↩
  97. Wang, Y., Mishra, S., Alipoormolabashi, P., Kordi, Y., Mirzaei, A., Arunkumar, A., Ashok, A., Dhanasekaran, A. S., Naik, A., Stap, D., Pathak, E., Karamanolakis, G., Lai, H. G., Purohit, I., Mondal, I., Anderson, J., Kuznia, K., Doshi, K., Patel, M., … Khashabi, D. (2022). Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks. ↩
  98. Gao, T., Fisch, A., & Chen, D. (2021). Making Pre-trained Language Models Better Few-shot Learners. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). https://doi.org/10.18653/v1/2021.acl-long.295 ↩
  99. LiĆ©vin, V., Hother, C. E., & Winther, O. (2022). Can large language models reason about medical questions? ↩
  100. Dang, H., Mecke, L., Lehmann, F., Goller, S., & Buschek, D. (2022). How to Prompt? Opportunities and Challenges of Zero- and Few-Shot Learning for Human-AI Interaction in Creative Applications of Generative Models. ↩
  101. Akyürek, A. F., Paik, S., Kocyigit, M. Y., Akbiyik, S., Runyun, Ş. L., & Wijaya, D. (2022). On Measuring Social Biases in Prompt-Based Multi-Task Learning. ↩
  102. Jin, Y., Kadam, V., & Wanvarie, D. (2022). Plot Writing From Pre-Trained Language Models. ↩
  103. Nadeem, M., Bethke, A., & Reddy, S. (2021). StereoSet: Measuring stereotypical bias in pretrained language models. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 5356–5371. https://doi.org/10.18653/v1/2021.acl-long.416 ↩
  104. Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y., Madotto, A., & Fung, P. (2022). Survey of Hallucination in Natural Language Generation. ACM Computing Surveys. https://doi.org/10.1145/3571730 ↩
  105. Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., & Chen, W. (2022). What Makes Good In-Context Examples for GPT-3? Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures. https://doi.org/10.18653/v1/2022.deelio-1.10 ↩
  106. Yuan, A., Coenen, A., Reif, E., & Ippolito, D. (2022). Wordcraft: Story Writing With Large Language Models. 27th International Conference on Intelligent User Interfaces, 841–852. ↩
  107. Fadnavis, S., Dhurandhar, A., Norel, R., Reinen, J. M., Agurto, C., Secchettin, E., Schweiger, V., Perini, G., & Cecchi, G. (2022). PainPoints: A Framework for Language-based Detection of Chronic Pain and Expert-Collaborative Text-Summarization. arXiv Preprint arXiv:2209.09814. ↩
  108. Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A., Khashabi, D., & Hajishirzi, H. (2022). Self-Instruct: Aligning Language Model with Self Generated Instructions. ↩
  109. Guo, J., Li, J., Li, D., Tiong, A. M. H., Li, B., Tao, D., & Hoi, S. C. H. (2022). From Images to Textual Prompts: Zero-shot VQA with Frozen Large Language Models. ↩
  110. Schick, T., & Schütze, H. (2020). Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference. ↩
  111. Kirchenbauer, J., Geiping, J., Wen, Y., Katz, J., Miers, I., & Goldstein, T. (2023). A Watermark for Large Language Models. https://arxiv.org/abs/2301.10226 ↩